
More Expressive GNNs:
Mitigating Oversquashing

S Deepak Narayanan, 22nd March 2022

Mentor: Kenza Amara

1

Overview

• Introduction to Oversquashing

• Oversquashing v/s Oversmoothing

• An example problem and a simple rewiring solution

• More Solutions to Alleviate Oversquashing

• Geometric GCN

• Rewiring with Positional Encodings

• A curvature perspective on Oversquashing

2

Overview

What is Oversquashing?

• Aggregation in multi-hop GNNs involve large neighborhoods
• GNNs “compress” this information into a fixed-length vector

• Bottleneck → Loss of Information
• Consequence: Difficult to learn long range information

3

[1] Alon, Uri, and Eran Yahav. "On the bottleneck of graph
neural networks and its practical implications." arXiv preprint

arXiv:2006.05205 (2020).

Picture taken from [1]

Oversquashing

Oversmoothing v/s Oversquashing

Oversmoothing

• Refers to all node embeddings converging to similar vectors

• Found to occur with increasing number of layers

• Common in short-range tasks

Oversquashing

• Bottleneck caused due to information compression

• Issue more related to graph topology than # of GNN layers

• More relevant to long-range tasks

4

Oversquashing

Demonstrating Oversquashing
• The Neighbors Match Problem
• Multiple Graphs; Labels are a function of the number of

immediate blue neighbors
• A single layer GNN can count, but cannot infer the label!

5

Picture taken from [1]

Oversquashing

Tree Neighbors Match

• Suppose the cloud is a binary tree
• We can control the “problem radius” (𝑟) – minimum number of

GNN layers needed to propagate sufficient information
• This example has Problem Radius 3

6

Picture taken from [1]

Oversquashing

Tree Neighbors Match - Results

• Take GNNs of 𝑘 = 𝑟 + 1 layers
• Even 𝑟 = 4 causes over-squashing
• Extent of Oversquashing depends on the aggregator

7

Picture taken from [1]

Oversquashing

Tree Neighbors Match - Analysis

GIN and GCN suffer from oversquashing “before” GAT!

GAT can potentially ignore half the information

8

Oversquashing

Rewiring: Solutions Outlook
Oversquashing Consequences
→ Capturing long-range dependencies are hard

• Rewiring involves modifying the underlying graph structure
• Modification: Changes the graph connectivity by addition or

removal of edges to ease information flow
• Solution 1: A Fully Adjacent Layer

9

Solutions

Solution 1: A Fully Adjacent (Last) Layer

10

S1: FA Layer

Fully Adjacent (FA) Layer – Results

Datasets: Quantum Chemistry, Biological, Computer Programs
All of these datasets contain long-range problems

11

Results taken from [1]

S1: FA Layer

Fully Adjacent Layer - Analysis

• Impressive performance gains over SOTA
• Why not make all layers FA?
• Graph topology

• Provides Relevant Inductive Bias → Regularization Effect

• Empirically 1500% higher error with all layers FA!

• Pros: Simple, Easy to Implement ☺
• Cons: Computationally expensive for large graphs

FA layer eases information flow and relieves bottleneck
while retaining graph topology from previous layers

12

Results taken from [1]

S1: FA Layer

Rewiring: Solutions Outlook
Oversquashing Consequences
→ Capturing long-range dependencies are hard

• Rewiring involves modifying the underlying graph structure
• Modification: Changes the graph connectivity by addition or

removal of edges to ease information flow
• Solution 1: A Fully Adjacent Layer
• Solution 2: Geometric GCN

13

Solutions

Geometric GCN

• Neighborhoods are defined by the underlying graph

• Q. Can we bring together nodes that are far apart but structurally
similar, and involve them in aggregation?

• Such nodes are especially important in disassortative graphs
(biological networks)

• More concretely, can we design modified neighborhoods over
which aggregation can capture long-range dependencies?

14

S2: GeomGCN

[2] Pei H, Wei B, Chang KC, Lei Y, Yang B. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287.

2020 Feb 13.

Geometric GCN – Key Ideas

• Construct a latent space where structurally similar nodes appear
together

• Exploit the underlying geometry of the latent space to define
new neighborhoods for aggregation

15

S2: GeomGCN

Geometric GCN – Modules and Components

• Node Embedding Module
• Maps the nodes to a latent continuous space

• Structural Neighborhood:
• Graph defined neighborhood and Latent space neighborhood

• Bi-Level Aggregation: This module has two levels of aggregation
• Low-Level Aggregation: Nodes from the same neighborhood and same

geometric relationship are aggregated into a virtual node

• High-Level Aggregation: Features are aggregated from virtual nodes to
generate final representations

16

S2: GeomGCN

Geometric GCN – Modules

• Node Embedding Module 𝑓: For Graph
𝐺 = 𝑉, 𝐸 , define 𝑓: 𝑣 → 𝑧𝑣 , 𝑧𝑣 ∈ ℝ𝑑,
𝑣 ∈ 𝑉

• Neighborhood of a node : 𝑁 𝑣 =
(𝑁𝑔 𝑣 ,𝑁𝑠 𝑣 , 𝜏).Here, 𝑁𝑔 𝑣 ,𝑁𝑠 𝑣
are respectively the graph neighborhood
and the latent space neighborhood

• 𝑁𝑠 𝑣 = 𝑢 𝑢 ∈ 𝑉, 𝑑 𝑧𝑢, 𝑧𝑣 < 𝜌},
where 𝑑 𝑧𝑢, 𝑧𝑣 is the distance metric in
the latent space

• 𝜏 is a relational operator; 𝜏: 𝑧𝑢, 𝑧𝑣 →
𝑟 ∈ 𝑅, where 𝑅 is the set of geometric
relations; E.g.: Direction w.r.t target node

17

S2: GeomGCN

Picture Taken from [2]

Geometric GCN – Aggregation

• Low Level Aggregation:
𝑒𝑖,𝑟
𝑣 = 𝑝(ℎ𝑢 𝑢 ∈ 𝑁𝑖 𝑣 , 𝜏 𝑧𝑣, 𝑧𝑢 = 𝑟})

∀𝑖 ∈ {𝑔, 𝑠}, ∀ 𝑟 ∈ 𝑅

• High Level Aggregation:
𝑚𝑣 = 𝑞(𝑒𝑖,𝑟

𝑣 , 𝑖, 𝑟)∀𝑖 ∈ 𝑔, 𝑠 ∀ 𝑟 ∈ 𝑅

• Representation for layer L:

ℎ𝑣
𝐿 = 𝜎 𝑚𝑣

𝐿;𝑊𝐿

18

S2: GeomGCN

Picture Taken from [2]

Advantages of a geometric neighborhood

• Geometric neighborhood informs every edge differently

• Can distinguish different graphs, even with same aggregator!

19

S2: GeomGCN

Picture Taken from [2]

Geometric GCN – Empirical Results

• GeomGCN with GCN aggregator outperforms GAT and GCN
significantly; Huge performance gains in disassortative graphs

• Design of Latent Space method is critical for performance

20

S2: GeomGCN

Results taken from [2]

Geometric GCN – Summary and Analysis

• Alleviates Oversquashing by rewiring the graph based on a
structural neighborhood ☺

• Requires manual design of geometric relations
• E.g. Direction from Target Node

• Performance heavily depends on the embedding module
• Current work uses methods such as Struct2Vec, Poincare, and Iso-map,

all of which have strong inductive biases

21

S2: GeomGCN

Rewiring: Solutions Outlook
Oversquashing Consequences
→ Capturing long-range dependencies are hard

• Rewiring involves modifying the underlying graph structure
• Modification: Changes the graph connectivity by addition or

removal of edges to ease information flow
• Solution 1: A Fully Adjacent Layer
• Solution 2: Geometric GCN
• Solution 3: Rewiring with Positional Encodings

22

Solutions

Rewiring with Positional Encodings - Preliminaries

• Receptive field of a node is it’s immediate neighbors from which
it aggregates information

• To reduce oversquashing, increase receptive field to the entire
graph
• Issues: Poor performance and introduces computational load

• Trade some compute for increasing receptive fields, while
reducing oversquashing

23

S3: Pos. Encoding

[3] Brüel-Gabrielsson, Rickard, Mikhail Yurochkin, and Justin
Solomon. "Rewiring with Positional Encodings for Graph Neural

Networks." arXiv preprint arXiv:2201.12674 (2022).

Positional Encodings in GNNs

• Additional information about graph topology provided either as
node/edge attribute for GNNs

• Examples: Laplacian Spectra, Node Degrees, Shortest Path
Lengths

• Increase GNN expressivity

24

S3: Pos. Encoding

Rewiring with Positional Encodings: Key Ideas

• Increase receptive field to a 𝑘-hop neighborhood where 𝑘 ≪ 𝐷
and 𝐷 is the diameter of the graph → Ease information flow

• Introduce positional encodings →More expressivity and
preserve graph topology

• Introduce Virtual Nodes → Ease information flow

25

S3: Pos. Encoding

Increasing Receptive Fields: Idea I

Expanded Receptive Field

• Given a graph 𝐺 = (𝑉, 𝐸, 𝑓𝑣 , 𝑓𝑒), with node attributes 𝑓𝑣 and edge
attributes 𝑓𝑒, add edges between all nodes within 𝑘-hops of each
other to create 𝐺′ = (𝑉, 𝐸′, 𝑓𝑣

′, 𝑓𝑒′)

• Set constant feature 𝐶𝑒∀ 𝑒 ∈ 𝐸′\E

• Virtual Node: Add a virtual node 𝑣𝐶𝐿𝑆 to 𝑉, and add an edge
between 𝑣𝐶𝐿𝑆 and every other node

• Set 𝑓𝑣
′ 𝑣𝐶𝐿𝑆 = 𝐶𝑣 for some constant 𝐶𝑣

26

S3: Pos. Encoding

Introducing Positional Encoding: Aims

• Lossless encodings – Be able to recover the original graph

• Discriminative Power: Encodings should improve the
discriminative power measured in terms of the 1-WL Test

• Context Range: Global or Local Information

27

S3: Pos. Encoding

Positional Encoding: Idea II - Options

• Shortest Path Encodings (SPE):
• Edge positional encoding denoting the shortest path distance between

two nodes in the graph

• Lossless encoding as we can recover 𝐺 from 𝐺′ when this encoding is 1

• Expanded receptive fields + SPE is more powerful than the 1-WL Test

• Spectral Embeddings:
• Node positional encoding consisting eigenvectors of the Laplacian

• Not necessarily lossless, but works well in practice

• Contains Global Information about the entire graph

28

S3: Pos. Encoding

Positional Encoding: Idea II - Options

• Powers of the Adjacency Matrix:
• Edge positional encoding generalizing SPE
• Captures number of paths between a pair of nodes

• Lossless encoding, since we can recover 𝐺 from 𝐺′ using the
first power of A

29

S3: Pos. Encoding

Positional Encoding: Options - Summary

• Shortest Path Encodings – Edge-based, Lossless, Expressive,
Local Context

• Spectral Embeddings – Node-based, Lossless*, Global Context
• Powers of the Adjacency Matrix – Edge-based, Lossless,

Generalizes SPE, Expressive, Controllable Context

30

S3: Pos. Encoding

Empirical Results – Benchmark Datasets

• Strong empirical performance with fewer parameters

• Empirically required receptive field has size 𝑘 ≪ 𝐷

• Encoding primarily depends on the dataset

31

S3: Pos. Encoding

Results taken from [3]

Empirical Results – Tree Neighbors Match
• In the figure, 𝑟 is the

receptive field, and 𝑟𝑝 is the
problem radius

• With 𝑟 = 1, and 𝑣𝐶𝐿𝑆,
similar performances of 𝑟 =
2, and 𝑟 = 3

32

S3: Pos. Encoding

Results taken from [3]

Rewiring with Positional Encodings - Summary

• Reduces Oversquashing by increasing receptive fields ☺

• Provides neat incorporation of positional encodings that can
theoretically make the GNN more expressive ☺

• Need to manually tune over receptive fields sizes

• Positional Encodings are application specific in practice

33

S3: Pos. Encoding

Rewiring: Solutions Outlook
Oversquashing Consequences
→ Capturing long-range dependencies are hard

• Rewiring involves modifying the underlying graph structure
• Modification: Changes the graph connectivity by addition or

removal of edges to ease information flow
• Solution 1: A Fully Adjacent Layer
• Solution 2: Geometric GCN
• Solution 3: Rewiring with Positional Encodings
• A Curvature Perspective of Oversquashing

34

Solutions

A curvature perspective of Oversquashing

35

Curvature

[4] Topping, Jake, et al. "Understanding over-squashing and bottlenecks on graphs via curvature." arXiv preprint arXiv:2111.14522 (2021).
[5] Bronstein, M. (2021, November 30). Over-squashing, bottlenecks, and graph Ricci curvature. Medium. Retrieved March 12, 2022, from

https://towardsdatascience.com/over-squashing-bottlenecks-and-graph-ricci-curvature-c238b7169e16

Picture Taken from [5]

Curvature – Sensitivity

36

• Sensitivity
𝜕ℎ𝑢

𝜕𝑥𝑠
can quantify how much a node representation is affected by

other node representations
• Sensitivity is bounded by powers of adjacency matrix → Graph Topology is

responsible!
• Smaller value potentially indicates oversquashing

Curvature

Picture Taken from [5]

Ricci Curvature of a Manifold

37

Curvature

Picture Taken from [5]

Curvature is characterized by “geodesic dispersion”

Geodesic Dispersion on Graphs

38

Curvature

Picture Taken from [5]

Curvature for Graphs and Take-Away

39

• Define a version of curvature for edges based on geometric cues
• For Spherical Geometry, Count Triangles

• For Euclidean Geometry, Count 4-cycles

• For Hyperbolic Geometry, Count # of outgoing edges

• Sensitivity is related to graph specific curvature

• Conclusion: Negatively curved edges → Cause oversquashing

Curvature

Rewiring: Solutions Outlook
Oversquashing Consequences
→ Capturing long-range dependencies are hard

• Rewiring involves modifying the underlying graph structure
• Modification: Changes the graph connectivity by addition or

removal of edges to ease information flow
• Solution 1: A Fully Adjacent Layer
• Solution 2: Geometric GCN
• Solution 3: Rewiring with Positional Encodings
• A Curvature Perspective of Oversquashing

• Solution 4: Curvature Based Rewiring

40

Solutions

A Curvature Based Rewiring Solution

41

Stochastic Discrete Ricci Flow (SDRF)

• Before training a GNN, rewire the graph as follows
• Consider a most bottlenecked edge

• Add an edge that can provide a high improvement to curvature

• Remove the least bottlenecked edge under certain conditions

• Repeat

• The above procedure greedily increases curvature and reduces over-
squashing by providing better connectivity ☺

Curvature

Empirical Results

42

Curvature

Results Taken from [4]

A curvature perspective of Oversquashing - Summary

• Establishes links between geometry and graph topology

• Leads to a very simple algorithm for rewiring

• These links can prove a better understanding using tools from
spectral graph theory

• Lots of interesting theoretical directions

43

Curvature

Summary: Outlook on Rewiring and Solutions
Oversquashing Consequences
→ Capturing long-range dependencies are hard

• Rewiring involves modifying the underlying graph structure
• Modification: Changes the graph connectivity by addition or

removal of edges to ease information flow
• Solution 1: A Fully Adjacent Layer
• Solution 2: Geometric GCN
• Solution 3: Rewiring with Positional Encodings
• A Curvature Perspective of Oversquashing

• Solution 4: A Curvature Inspired Rewiring Solution

44

Summary

